Analysis and Design of Algorithms Lecture 3

Analysis of Algorithms II

Dr. Mohamed Loey

Lecturer, Faculty of Computers and Information Benha University Egypt

Table of Contents

Maximum Pairwise Product

Fibonacci

Greatest Common Divisors

Maximum Pairwise Product

Maximum Pairwise Product

\square Given a sequence of non-negative integers a_{0}, \ldots, a_{n-1}, find the maximum pairwise product, that is, the largest integer that can be obtained by multiplying two different elements from the sequence (or, more formally, max $a_{i} a_{j}$ where $0 \leq i \neq j \leq n-1)$. Different elements here mean a_{i} and a_{j} with $\mathrm{i} \neq \mathrm{j}$ (it can be the case that $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{j}}$).

Maximum Pairwise Product

$\square C o n s t r a i n t s 2 \leq n \leq 2 * 10^{5} \& 0 \leq a_{0}, \ldots, a_{n-1} \leq 10^{5}$.

Maximum Pairwise Product

\square Sample 1

* Input: 123
* Output:6
\square Sample 2
* Input: 751428810123
* Output:140

Maximum Pairwise Product

\square Sample 3

* Input: 46261
* Output:36

Maximum Pairwise Product

2	4	3	5	1

\square Assume the following array

Maximum Pairwise Product

\square Assume the following array

Result=0

Maximum Pairwise Product

Assume the following array

If $a[i] * a[j]>$ result result=a[i]*a[j]=8

Maximum Pairwise Product

\square Assume the following array

If $\mathrm{a}[\mathrm{i}]^{*} \mathrm{a}[\mathrm{j}]>$ result result=8

Maximum Pairwise Product

\square Assume the following array

If $\mathrm{a}[\mathrm{i}]^{*} \mathrm{a}[\mathrm{j}]>$ result result= a[i]*a[j] =10

Maximum Pairwise Product

Naive algorithm

def max_pairwise_product(a):

result = 0
for i in range(0, len(a)):
for j in range(i+1, len(a)):
if a[i]*a[j] > result: result = a[i]*a[j]
return result

Maximum Pairwise Product

\square Python Code:

$$
\begin{aligned}
& a=[2,6,4,5,2] \\
& \text { print(max_pairwise_product }(a))
\end{aligned}
$$

30

Maximum Pairwise Product

\square Time complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$

def max_pairwise_product(a):

result = 0
for i in range(0, len(a)):
for j in range(i+1, len(a)):
if a[i]*a[j] > result: result = a[i]*a[j]
return result

Maximum Pairwise Product

Dwe need a faster algorithm. This is because our program performs about n^{2} steps on a sequence of length n. For the maximal possible value $n=200,000=2^{*} 10^{5}$, the number of steps is $40,000,000,000=4^{*} 10^{10}$. This is too much. Recall that modern machines can perform roughly 10^{9} basic operations per second

Maximum Pairwise Product

2	4	3	5	1

\square Assume the following array

Maximum Pairwise Product

Find maximum number 1

Maximum Pairwise Product

\square Find maximum number2 but not maximum number1

Maximum Pairwise Product

\square Find maximum number2 but not maximum number1

return max1*max2

Maximum Pairwise Product

- Efficient algorithm

```
def max_pairwise_product_fast(numbers):
    max1 = -1
    index1 = None
    max2 = -1
    for element in range(len(numbers)):
        if numbers[element] >= max1:
            max1 = numbers[element]
            index1 = element
    for element in range(len(numbers)):
        if numbers[element] >= max2:
            if element != index1:
                        max2 = numbers[element]
    return max1 * max2
```


Maximum Pairwise Product

- Efficient algorithm

```
numbers=[2,6,4,5,2]
print(max_pairwise_product_fast(numbers))
```

30

Maximum Pairwise Product

- Time complexity $\mathrm{O}(\mathrm{n})$

```
def max_pairwise_product_fast(numbers):
max1 = -1
index1 = None
max2 = -1
for element in range(len(numbers)):
    if numbers[element] >= max1:
        max1 = numbers[element]
        index1 = element
for element in range(len(numbers)):
    if numbers[element] >= max2:
        if element != index1:
                        max2 = numbers[element]
return max1 * max2
```

Fibonacci

Fibonacci

$0,1,1,2,3,5,8,13,21,34, \ldots$

Fibonacci

\square Definition:

$$
\square F_{n}=\left\{\begin{array}{cc}
0 & n=0 \\
1 & n=1 \\
F_{n-2}+F_{n-1} & n>1
\end{array}\right\}
$$

Fibonacci

\square Examples:
$* F_{8}=21$
$* F_{20}=6765$
$* F_{8}=21$
$* F_{20}=6765$

* $F_{50}=12586269025$
$F_{100}=354224848179261915075$
.

-
 .

[^0]
Fibonacci

\square Examples:

* $F_{500}=$

1394232245616978801397243828
 7040728395007025658769730726
 4108962948325571622863290691
 557658876222521294125

Fibonacci

def fib(n):
else:
return $f i b(n-1)+f i b(n-2)$

- Naive algorithm

$$
\begin{array}{r}
\text { if }(\mathrm{n}<=1): \\
\quad \text { return } n
\end{array}
$$

Fibonacci

- Naive algorithm

6765
دסוס
print(fib(100))

Very Long Time why????

print(fib(20))

Fibonacci

Fibonacci

Fibonacci

Fibonacci

\square Fib algorithm is very slow because of

 recursion
\square Time complexity $=O\left(2^{n}\right)$

Fibonacci

- Efficient algorithm

Fibonacci

- Efficient algorithm

```
def fib_fast(n):
    if (n <= 1):
        return n
    else:
        numbers = [0, 1]
        for i in range(n-1):
        numbers.append(numbers[-1]+numbers[-2])
        return numbers[-1]
```


Fibonacci

-Efficient algorithm
print(fib(20))

$$
\begin{aligned}
& 6765 \\
& \begin{array}{|l}
\text { print(fib_fast(100)) } \\
354224848179261915075 \\
\text { short Time why???? }
\end{array}
\end{aligned}
$$

\square
\qquad

\qquad

Fibonacci

DFib_Fast algorithm is fast because of

loop + array
\square Time complexity $=O\left(n^{2}\right)$

Fibonacci

- Efficient algorithm

print(fib_faster(1000000))

$$
>\text { Try }
$$

Very long Time why????

Fibonacci

DAdvanced algorithm

*No array

* Need two variable + Loop

Fibonacci

\square Advanced algorithm
\square Compute F_{6}
$\square a=0, b=1$ (

\qquad

都

Fibonacci

- Advanced algorithm

\square Compute F_{6}
$a \mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{a}+\mathrm{b}$

a	b
1	1

\mathbf{a}	b
1	1

4-

$$
2
$$

\qquad

\mathbf{a}	b
1	1

\mathbf{a}	b
1	1

\mathbf{a}	b
1	1

Fibonacci

- Advanced algorithm

\square Compute F_{6}
$a \mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{a}+\mathrm{b}$

\qquad.

Fibonacci

- Advanced algorithm

\square Compute F_{6}

$$
\square a=b, b=a+b
$$

a

Fibonacci

\square Advanced algorithm

\square Compute F_{6}
$a \mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{a}+\mathrm{b}$

nalysis and Design of Algorithms

\square Advanced algorithm

$a \mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{a}+\mathrm{b}$

\qquad(D)

\square Compute F_{6}

nalysis and Design of Algorithms
(1)

\qquad

Fibonacci

\square Advanced algorithm

\square Compute $\mathrm{F}_{6}=8$

 en

Fibonacci

- Advanced algorithm

\square


```
def fib_faster(n):
if ( \(n<=1\) ):
return n
if \(\left(\begin{array}{r}n \\ \text { else: }\end{array}\right.\)
\[
\begin{align*}
& a, b=0,1 \\
& \text { for } i \text { in range }(n-1): \\
& \quad b, a=b+a, b
\end{align*}
\]
if ( \(\mathrm{n}<=1\) ):
```

```
if \((\mathrm{n}<=1):\)
return n
```

\qquad

-


```
def fib_faster(n):
```



```
\(\square\)
```
```

$$
\begin{align*}
& \text { inge }(n-1): \\
& b+a, b
\end{align*}
$$

$\square$正

ـ
-
-
,




,










## Fibonacci

$\square$ Advanced algorithm
print(fib(20))
6765
print(fib_fast(100))
354224848179261915075

## Very short Time why????

 i .6765

## Fibonacci

## DFib_Faster algorithm is faster because

 of loop + two variables$\square$ Time complexity $=O(n)$
$\square$
$\square$
$\square$
$\square$
$\square$
, （
















## Greatest Common Divisors

## Greatest Common Divisors

$\square$ ln mathematics, the greatest common divisor (gcd) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers.

## Greatest Common Divisors

## Dlnput Integers $a, b>=0$

 -Output gcd(a,b)
## Greatest Common Divisors

What is the greatest common divisor of 54 and 24?
The divisors of 54 are: $1,2,3,6,9,18,27,54$
Similarly, the divisors of 24 are: $1,2,3,4,6,8,12,24$
The numbers that these two lists share in common are the common divisors of 54 and 24: 1,2,3,6

The greatest of these is 6 . That is, the greatest common divisor of 54 and 24 . $\operatorname{gcd}(54,24)=6$

## Greatest Common Divisors

## Naive algorithm

def $\operatorname{gcd}(a, b)$ :
if $a>b$ :
$i=a$
else:
i=b
while i>=1: if $a \% i==0$ and $b \% i==0$ :
break
i=i-1
return i

## Greatest Common Divisors

print $(\operatorname{gcd}(54,24))$

6
print (gcd(3918848, 1653264))
61232

## Greatest Common Divisors

# $\square$ gcd algorithm is slow because of loop 

## $\square$ Time complexity $=O(n)$

## $\square \mathrm{n}$ depend on $\mathrm{a}, \mathrm{b}$

## Greatest Common Divisors

## - Efficient algorithm

def gcd_fast(a, b):
if $a \% b==0$ :
return b
return gcd_fast(b, a\%b)

## Greatest Common Divisors

## - Efficient algorithm

print(gcd_fast(54, 24))
6
print(gcd_fast(3918848, 1653264))
61232

## Greatest Common Divisors

- Efficient algorithm

$$
\begin{gathered}
\text { gcd_fast ((3918848, 1653264)) } \\
\text { gcd_fast((1653264, 612320)) } \\
\text { gcd_fast((612320, 428624))) } \\
\text { gcd_fast ((428624, 183696)) } \\
\text { gcd_fast((183696, 61232)) } \\
\text { return } 61232
\end{gathered}
$$

## Greatest Common Divisors

## -Efficient algorithm

$\square$ Take 5 steps to solve gcd_fast ( 3918848,1653264 ) )
$\square$ Time complexity $=\mathrm{O}(\log (\mathrm{n}))$
$\square \mathrm{n}$ depend on $\mathrm{a}, \mathrm{b}$

## Summary

$\square$ Naive algorithm is too slow.
$\square$ The Efficient algorithm is much better.
$\square$ Finding the correct algorithm requires knowing something interesting about the problem.

## Contact Me



## THANKS FOR YOUR TIME




[^0]:    

