

Analysis and Design of Algorithms Lecture 3

Analysis of Algorithms II

Dr. Mohamed Loey

Lecturer, Faculty of Computers and Information Benha University

Egypt

Table of Contents

Maximum Pairwise Product

Fibonacci

Greatest Common Divisors

 \Box Given a sequence of non-negative integers a_0, \ldots, a_{n-1} , find the maximum pairwise product, that is, the largest integer that can be obtained by multiplying two different elements from the sequence (or, more formally, max aiai where $0 \le i \ne j \le n-1$). Different elements here mean a_i and a_i with $i\neq i$ (it can be the case that $a_i=a_i$).

 \square Constraints $2 \le n \le 2 * 10^5 \& 0 \le a_0, ..., a_{n-1} \le 10^5$.

- ☐ Sample 1
- ❖ Input: 1 2 3
- Output:6
- ☐ Sample 2
- ❖ Input: 7 5 14 2 8 8 10 1 2 3
- ❖ Output: 140

- ☐ Sample 3
- ❖ Input: 4 6 2 6 1
- Output:36

☐ Assume the following array

2 4 3 5 1

☐ Assume the following array

Result=0

☐ Assume the following array

☐ Assume the following array

☐ Assume the following array

□ Naive algorithm

```
def max pairwise product(a):
    result = 0
    for i in range(0, len(a)):
        for j in range(i+1, len(a)):
            if a[i]*a[j] > result:
                result = a[i]*a[j]
    return result
```

☐ Python Code:

```
a=[2,6,4,5,2]
print(max_pairwise_product(a))
```

30

 \Box Time complexity $O(n^2)$

```
def max pairwise product(a):
    result = 0
    for i in range(0, len(a)):
        for j in range(i+1, len(a)):
            if a[i]*a[j] > result:
                result = a[i]*a[j]
    return result
```

we need a faster algorithm. This is because our program performs about n² steps on a sequence of length n. For the maximal possible value $n=200,000 = 2*10^5$, the number of steps is $40,000,000,000 = 4*10^{10}$. This is too much. Recall that modern machines can perform roughly 109 basic operations per second

☐ Assume the following array

2 4 3 5 1

☐ Find maximum number1

☐ Find maximum number2 but not maximum number1

☐ Find maximum number2 but not maximum number1

return max1*max2

☐ Efficient algorithm

```
def max_pairwise_product_fast(numbers):
    \max 1 = -1
    index1 = None
    \max 2 = -1
    for element in range(len(numbers)):
        if numbers[element] >= max1:
            max1 = numbers[element]
            index1 = element
    for element in range(len(numbers)):
        if numbers[element] >= max2:
            if element != index1:
                max2 = numbers[element]
    return max1 * max2
```

☐ Efficient algorithm

```
numbers=[2,6,4,5,2]
print(max_pairwise_product_fast(numbers))
```

30

☐ Time complexity O(n)

```
def max_pairwise_product_fast(numbers):
    \max 1 = -1
    index1 = None
    \max 2 = -1
    for element in range(len(numbers)):
        if numbers[element] >= max1:
            max1 = numbers[element]
            index1 = element
    for element in range(len(numbers)):
        if numbers[element] >= max2:
            if element != index1:
                max2 = numbers[element]
    return max1 * max2
```

□ Definition:

$$\Box F_n = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F_{n-2} + F_{n-1} & n > 1 \end{cases}$$

□ Examples:

$$F_8 = 21$$

$$rightharpoonup F_{20} = 6765$$

$$F_{50} = 12586269025$$

$$F_{100} = 354224848179261915075$$

☐ Examples:

$$F_{500} =$$

1394232245616978801397243828

7040728395007025658769730726

4108962948325571622863290691

557658876222521294125

□ Naive algorithm

```
def fib(n):
    if (n <= 1):
        return n
    else:
        return fib(n-1) + fib(n-2)
```

□ Naive algorithm

```
print(fib(20))
```

6765

print(fib(100))

Very Long Time why????

Tib algorithm is very slow because of

recursion

Time complexity = $O(2^n)$

☐ Efficient algorithm

Create array then insert fibonacci

☐ Efficient algorithm

```
def fib fast(n):
    if (n <= 1):
        return n
    else:
        numbers = [0, 1]
        for i in range(n-1):
            numbers.append(numbers[-1]+numbers[-2])
        return numbers[-1]
```

☐ Efficient algorithm

```
print(fib(20))
```

6765

```
print(fib_fast(100))
```

354224848179261915075

short Time why????

- Fib_Fast algorithm is fast because of
 - loop + array
- $\Box \text{Time complexity} = O(n^2)$

- ☐ Efficient algorithm
- > Try

```
print(fib_faster(1000000))
```

Very long Time why????

- □ Advanced algorithm
- No array
- ❖Need two variable + Loop

- □ Advanced algorithm
- □ Compute F₆
- □ a=0, b=1

a k

- □ Advanced algorithm
- □ Compute F₆
- □ a=b, b=a+b

a l

- □ Advanced algorithm
- □ Compute F₆
- □ a=b, b=a+b

- □ Advanced algorithm
- □ Compute F₆
- □ a=b, b=a+b

a l

- □ Advanced algorithm
- □ Compute F₆
- □ a=b, b=a+b

a k

- □ Advanced algorithm
- ☐ Compute F₆
- □ a=b, b=a+b

a l

- □ Advanced algorithm
- \Box Compute $F_6=8$

a k

□ Advanced algorithm

```
def fib_faster(n):
    if (n <= 1):
        return n
    else:
        a, b = 0, 1
        for i in range(n-1):
            b, a = b + a, b
        return b
```

□ Advanced algorithm

```
print(fib(20))
```

6765

```
print(fib_fast(100))
```

354224848179261915075

Very short Time why????

□ Fib_Faster algorithm is faster because of loop + two variables

 $\Box Time complexity = O(n)$

- □ Advanced algorithm
- > Try

```
print(fib_faster(1000000))
```

Short Time why????

In mathematics, the greatest common divisor (gcd) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers.

- □Input Integers a,b >=0
- □Output gcd(a,b)

- ☐ What is the greatest common divisor of 54 and 24?
- ☐ The divisors of 54 are: 1,2,3,6,9,18,27,54
- ☐ Similarly, the divisors of 24 are: 1,2,3,4,6,8,12,24
- ☐ The numbers that these two lists share in common are the common divisors of 54 and 24: 1,2,3,6
- ☐ The greatest of these is 6. That is, the greatest common divisor of 54 and 24. gcd(54,24)=6

□ Naive algorithm

```
def gcd(a,b):
    if a>b:
        i=a
    else:
        i=b
    while i>=1:
         if a\%i==0 and b\%i==0:
             break
         i=i-1
    return i
```

```
print(gcd(54,24))
```

6

```
print(gcd(3918848,1653264))
```

- gcd algorithm is slow because of loop
- $\Box Time complexity = O(n)$
- In depend on a,b

☐ Efficient algorithm

```
def gcd_fast(a, b):
   if a%b == 0:
      return b
   return gcd_fast(b, a%b)
```

☐ Efficient algorithm

```
print(gcd_fast(54,24))
```

6

```
print(gcd_fast(3918848,1653264))
```

☐ Efficient algorithm

```
gcd_fast((3918848, 1653264))
gcd_fast((1653264, 612320))
 gcd_fast((612320, 428624))
 gcd fast((428624, 183696))
 gcd fast((183696, 61232))
        return 61232
```

- ☐ Efficient algorithm
- □ Take 5 steps to solve gcd_fast((3918848, 1653264))
- $\Box Time complexity = O(log(n))$
- n depend on a,b

Summary

- □Naive algorithm is too slow.
- The Efficient algorithm is much better.
- □ Finding the correct algorithm requires knowing something interesting about the problem.

Contact Me

